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INFM-S3 e Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A,
41100 Modena, Italy

Received 4 May 2004
Published 9 July 2004
Online at stacks.iop.org/JPhysCM/16/S2895
doi:10.1088/0953-8984/16/29/004

Abstract
The hysteretic dynamics of a Frenkel–Kontorova chain subject to irregular
substrate potentials and driven by an external dc force is studied both in
the underdamped and in the overdamped regime at zero temperature. The
choice of a rigid external potential defined by the sum of two sinusoidal
functions with different periodicity allows us to simulate microscopic sliding
over quasiperiodic and multiple-well periodic substrates. We analyse, for
different parameter values of the model, the behaviour of the centre of mass
average velocity of the chain as a function of an adiabatic increase and decrease
of the applied driving. For small damping coefficients (negligible dissipative
forces), at a fixed value of the substrate potential amplitude, the width of the
hysteresis region is markedly influenced by the chain stiffness. As expected, in
the overdamped dynamical regime no hysteresis is observed. We comment on
the nature of the dynamical states displayed during the chain motion at different
strengths of the dc driving.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nonlinear systems driven far from equilibrium exhibit a variety of complex spatial and temporal
behaviours. In particular, in the emerging field of nanoscale sciences and technologies [1],
understanding the nonequilibrium dynamics of simple nonlinear particle arrays and clusters
subjected to a substrate potential, viscous damping and driven by an external force, is becoming
more and more often a central issue.

It has recently been shown [2] that simple phenomenological models of friction, which
are typically low dimensional compared to the large number of degrees of freedom available in
the array, give reasonable agreement with experimental results on nanoscale tribology, being
able to capture the main features of the complicate dynamics involved. In particular, there
has been a growing interest in driven Frenkel–Kontorova (FK) models [3], in which a certain
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density of interacting particles is made to slide, by the application of an external driving force
and in the presence of dissipation, over a rigid substrate.

The shape of the substrate potential, assumed purely sinusoidal in the standard FK
chain [4], is a factor of significant importance when modelling physical systems. The deviation
from the periodic sinusoidal shape modifies the parameters of both linear and nonlinear
interactions, leading to qualitatively different features such as the appearance of different types
of kinks, phonon branches, changes in kink–antikink collisions, and modification of breather
(kink–antikink bound state) solutions. All of these characteristics may lead to a consequent
drastic change in the friction dynamics between the two solid interfaces in relative motion.

In this paper, we consider the dynamics of a driven FK chain subject to an on-site
potential defined by the sum of two sinusoidal functions with different periodicity [5, 6]. The
incommensurate or commensurate choice among the system length-scales allows us to simulate
the motion of the system over quasiperiodic or multiple-well periodic substrates, respectively.
In particular, we focus on the hysteretic behaviour [7] of the chain average velocity as a function
of the adiabatically applied driving force at zero temperature. As long as the thermal energy is
much smaller than the amplitude of the external potential the qualitative dynamical behaviour
does not change much and an analysis in the absence of a an external noise, such as thermal
fluctuations (via a Langevin equation approach), is reasonable, as shown through numerical
simulations of similar models [8]. Regarding this point, it seems often relevant that the system
has many degrees of freedom. In the case for example of just one (Brownian) particle [9] the
hysteresis phenomenon disappears even for an infinitesimally small noise amplitude, because
the fluctuations can kick the particle out of a locked state.

In the velocity–driving characteristics, the kinds of transitions between pinned,
intermediate and sliding states, for adiabatically increasing and decreasing force, do not have
to occur at the same value of the applied driving. The behaviour depends strongly on whether
the system degrees of freedom have inertia or if the inertia is negligible compared to dissipative
forces [10]. In the presence of strong dissipation, when the viscous friction coefficient γ is
much larger than the characteristic vibrational frequency at the bottom of the substrate potential,
the motion is overdamped; the pinning–depinning transition is in most cases expected to be
of second order, and indistinguishable from the reverse one. Interesting results were obtained
by reducing the time-independent Smoluchowski equation for a steady state of the driven
system to a one-particle equation with an effective on-site potential, which then was solved
numerically by a transfer operator technique [11]. The results show the existence of a nonlinear
mobility region, but without any bistability phenomenon. If, on the other hand, the motion is
underdamped, we expect that hysteresis is possible because the inertia can overcome a pinning
centre.

The paper is organized as follows. In section 2 we briefly describe the main features of the
damped, driven FK model subject to the on-site potential defined by the sum of two sinusoidal
functions with different periodicity. We summarize the numerical technique implemented to
solve the nonlinear equations of motion and to study the hysteresis cycle. Sections 3 and 4
are devoted to the presentation of the simulation results for quasiperiodic and multiple-well
periodic substrate potentials, respectively, both in the underdamped and overdamped dynamical
regimes. Conclusions are given in the last section.

2. The model

We investigate the dynamics of a driven FK model whose N particle positions {xi} satisfy the
following equations of motion:

ẍi + γ ẋi +
1

2

[
sin

2π

a
xi + sin

2πβ

a
xi

]
+

d

dxi

[∑
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Figure 1. Profiles of the substrate potential for the golden-mean quasiperiodic case (upper panel)
and the β = 24/30 multiple-well periodic case (lower panel). Only a limited portion of the system
length is displayed for clarity.

where γ is a phenomenological viscous damping. This coefficient can be thought of as
representing degrees of freedom inherent in real, physical systems which are not explicitly
included in our model (e.g., vibrational or electronic excitations in the substrate). In a 2D
isotropic elastic model with no extrinsic damping terms, it has been recently shown [12] that,
at least qualitatively, the dynamical behaviour observed is similar to that seen in simple 1D
friction models including ad hoc viscous damping [13]. In equation (1) the dots denote time
derivatives and F represents the external driving force applied to all atoms of the chain. The
numerical simulations are carried out choosing for the interatomic interaction a Morse-type
potential

V (r) = K

2
[1 − e(b−r)]2, (2)

with strength K and natural equilibrium spacing b = L/N , where L is the chain length. The
geometry of the substrate potential is defined via the values of the two spatial periodicities
a and c = a/β. In order to avoid effects due to the boundary layers, the periodic boundary
conditions

xi+N = xi + Nb (3)

are imposed on the system.
The length scale competition between the substrate and the interatomic potentials controls

the static and dynamic behaviour of the system, resulting in a rich complexity of spatially
modulated structures for the chain particles. In this paper, we focus on the hysteretic response of
the FK chain to the imposed external driving both for mutually incommensurate (quasiperiodic
substrates) and mutually commensurate (multiple-well periodic substrates) choices of the three
characteristic lengths a, b and c of the system. The two panels of figure 1 show a portion of
the substrate potential profiles considered for simulations.

A fourth-order Runge–Kutta algorithm is implemented to solve numerically the equations
of motion (1). The system is initialized with the particles placed at rest at uniform separation b.
The dc-force, F , is then increased adiabatically. For every value of F , equation (1) is integrated
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Figure 2. 〈v〉–F characteristics for two different values of the interparticle interaction strength
K (chain stiffness). The two distinct symbols, corresponding to an adiabatic increase (triangle)
and decrease (circle) of the applied driving, show the occurrence of the hysteretic behaviour. The
simulations refer to the underdamped case of a quasiperiodic FK chain with inherent lengths related
by the golden mean winding number.

over a time period [0, T ] long enough to eliminate transient behaviour and reach a steady state
for which the centre of mass average velocity of the chain 〈v〉 is then calculated. The final
chain configuration (positions and velocities) obtained at one value of F is used as the initial
condition for the integration of the dynamics for the next value of the driving. In order to
analyse the backward transitions from running to locked states and the hysteresis cycle, we
adopt the same numerical procedure by decreasing adiabatically down to zero the applied
force F .

3. Quasiperiodic substrates

In figure 2 we show the centre of mass average velocity of the chain as a function of the
imposed driving for an underdamped dynamical regime (γ = 0.7). Here, we have considered
the case of the familiar golden mean winding number. We recall [5] that the presence of
periodic boundary conditions forces us to approximate the desired incommensurate numbers
by ratios of integers. For our choice, the system lengths a, b and c turn out to be related
by ratios of Fibonacci numbers. In particular, we have chosen a = 1, b = 144/233 and
c = a/β = 144/89, so that the system size is L = 144 and the chain is made up of N = 233
particles. In the panels of figure 2, corresponding to two distinct values of the interatomic
interaction strength K , the existence of the hysteretic behaviour in the 〈v〉 versus F curves is
highlighted by the two different symbols used for the adiabatic increase (triangles) and decrease
(circles) of the force. In the upper panel, when the external driving is increased, it is possible
to distinguish roughly three different regions. Below a critical value Fs ≈ 0.2 (static friction),
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the applied force is too low and the atoms, trapped in the external quasiperiodic potential wells,
do not move. The system is in the locked (or pinned) state with a zero mobility. Above Fs, the
motion starts via the formation of a small number of isolated, narrow defects (kinks) along the
chain. These states correspond to an intermediate-sliding regime, where a detailed study of the
particle trajectories indicates clearly that the local compression zones are moving but not the
individual atoms, except when a kink passes through their site. Physically this phenomenon
signifies that it is easier to move a dislocation coherently along the chain than to move all the
atoms simultaneously. The number of these kinks increases as one raises the driving force,until
they begin to overlap. At a second thresholds force (Fr ≈ 0.79), the chain dynamics changes
to the high driving running regime. In this case, all the particles slide, almost uniformly, over
the quasiperiodic substrate. These states, also called solid-sliding states, are characterized by
the largest average sliding velocities γ 〈v〉 = F .

When the external field is adiabatically reduced, the system leaves the last solid-sliding
state, reaching the intermediate regime of motion, at a force F (≈0.63) lower than Fr . As
the chain is either in an intermediate-sliding state or in a solid-sliding state, depending on its
initial velocity condition, the system exhibits bistability and the transition between these two
regimes shows hysteresis. The kinetic energy being much larger than the thermal energy, the
introduction of a finite (not to high) temperature should not modify this scenario seriously.
One may expect that the transition between the high running state and the intermediate sliding
regime will be simply smeared out. Then for forces F < 0.16 (<Fs) the chain drops back
to the pinned state. In the lower panel of figure 2, the same characteristic curves of 〈v〉 as a
function of F are displayed for a much stiffer chain, that is, for a larger value of the interatomic
interaction strength K . In this situation, even just above Fs, there is an appreciable background
drift velocity on the top of which the inhomogeneities occur and we observe, from the very
beginning, a relatively large chain velocity (i.e. 〈v〉 ∼ F/γ ). For these values of the model
parameters, the width of the hysteretic region decreases considerably and manifests itself just
in the neighbourhood of the parametric resonances [14].

Figure 3 shows the 〈v〉 versus F characteristics for the overdamped dynamics (γ = 3) of
the quasiperiodic FK chain. As already mentioned, the transition from the locked to the running
state is expected to be of second order, and indistinguishable from the backward process. In
this case, both for the soft (K = 1, upper panel) and the stiff (K = 3π , lower panel) chain,
the particle inertia is negligible compared to dissipative forces. The system does not show
evidence of any bistability phenomenon and, consequently, the hysteresis region is missing.
As in the previous underdamped regime and in accordance with the theoretical consideration
based on the standard FK model, we observe that, for the same substrate potential amplitude,
the static friction value drops as the chain stiffness (i.e. K ) increases. Obviously, the value of
the viscous damping coefficient γ does not affect Fs.

We have also carried out simulations for other irrational choices of the characteristic
lengths a, b and c of the model. For all these simulations, we have recovered an hysteretic
dynamical behaviour consistent with the already mentioned observations.

4. Multiple-well periodic substrates

In this section, we shall focus on the hysteretic behaviour of 〈v〉 as a function of F for the
case of a commensurate choice among the three model length scales already considered in a
previous study [6]. Therefore, the numerical results refer to a substrate potential characterized
by the parameters a = 1 and c = a/β = 30/24. This potential has a periodicity T = 5 and
we count five wells, with different amplitudes, in each substrate unit cell. The simulations are
performed for a system size L = 30 and a chain made up of N = 30 particles. The effect of
the external driving is to tilt the potential, producing a corrugated surface whose average slope
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Figure 3. 〈v〉–F characteristics for the same quasiperiodic FK model of figure 1, but in the
overdamped regime. Adiabatic increase and decrease of the force are denoted by triangles and
circles, respectively. In this case, independently of K , no hysteresis is observed.

is determined by F . Increasing the driving leads, in the presence of an irregular substrate, to a
sequential disappearance of the potential minima. Thus, as already pointed out [6], one should
distinguish in this case between a static (F = 0) and a dynamic (F �= 0) commensurability of
the coverage variable (defined as the ratio of the number N of atoms to the number of minima
in the substrate potential).

Figure 4 represents the centre of mass average velocity as a function of the driving in the
underdamped dynamical regime. The upper (K = 1) and lower (K = 3π) panels clearly
show an hysteretic behaviour in the characteristics 〈v〉 versus F . Because of the complex
nature of the substrate potential, as compared for example to the simple sinusoidal one of
the standard driven FK model, it is not easy to trace a precise relation between the multiple
steps displayed in these curves, above the depinning threshold Fs, and the various dynamical
behaviours observed during the chain motion. These regimes correspond to rearrangements
of particle configurations (spatial inhomogeneities) with distinct periodicities and amplitudes.
When these commensurate moving structures are extended enough with respect to the substrate
period, their topological shape turns out to be decorated by superimposed smaller deformable
particle configurations with the same periodicity T . Their geometries and amplitudes are,
clearly, dependent also on the stiffness (i.e. the interatomic strength K ) and length (i.e. the
particle number N) of the chain. Comparing the lower panel of figure 4 to the upper one, it can
be noted that the spatially inhomogeneous intermediate states, between the locked configuration
and the solid-sliding one, tend to decrease in number since the relative separations among
particles are more constrained by the higher chain stiffness.

As before, in this underdamped regime the dissipative forces are negligible compared to
the particle inertia and the system, depending on its initial velocity, exhibits bistability with
a hysteresis region whose width decreases for increasing values of K . In our simulations,
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Figure 4. 〈v〉–F characteristics for the underdamped multiple-well periodic FK chain. Other
model parameters are as shown. The black dashed vertical line at F = 0.4, in the upper panel,
marks the two dynamical states of the chain displayed in figure 4.
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Figure 5. Commensurate dynamical structures of different periodicity and amplitude,
corresponding to the two states at F = 0.4 indicated by the vertical dashed line in the upper
panel of figure 3.

we have analysed some of the two dynamical states of the chain associated with the same
value of the applied driving. In figure 5, we show the snapshots of the commensurate moving
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structures occurring at a force F = 0.4. (The two states considered are those marked by the
vertical dashed line in the upper panel of figure 4.) In plot (a) (adiabatic increasing process) we
observe the dynamics of a ten-period structure with a calculated average amplitude around 0.91;
plot (b) (adiabatic decreasing process) is instead characterized by a five-period structure with
average amplitude equal 0.54. The values of these amplitudes can be an indirect measure of the
degree of internal vibrational motion among particles. The solid-sliding regime, for example,
is characterized by the dynamics of structures with approximately vanishing amplitudes, so
that the motion is almost uniform.

We have also verified that very similar results are obtained considering the hysteresis of a
bigger system (L = 140, N = 140), but with an identical substrate spatial geometry (a = 1,
c = a/β = 30/24). In this case, therefore, a size-dependent effect seems to be excluded.

As in the previous section, we have checked that, also for the multiple-well periodic
potential, the overdamped dynamics does not reveal any bistability phenomenon.

5. Conclusions

In this paper, we have investigated the sliding dynamics of an interacting chain of atoms
subject to a dissipative viscous damping and driven by an external dc force over irregular
substrate potentials. The choice of an on-site potential defined by the sum of two sinusoidal
functions with different periodicity allows us to simulate the microscopic friction dynamics
over quasiperiodic and multiple-well periodic substrates. In particular, we have focused our
study on the hysteretic behaviour of the centre of mass average velocity of the chain as a function
of the adiabatically increasing and decreasing driving, at zero temperature. This investigation
has been carried out for different values of the model parameters. In the underdamped regime,
we have observed a critical dependence of the width of the hysteretic region on the chain
stiffness. At larger values of the interparticle interaction strength K , for example, hysteresis
manifests itself just in the neighbourhood of the parametric resonances. On the other hand,
for a large viscous damping coefficient (overdamped regime), the dissipative forces become
predominant with respect to the inertia of the particles. The system no longer exhibits
bistability, and the transitions between the different sliding states occur at the same value
of the applied force. We have also commented on the nature of the distinct dynamical states
giving rise to the multiple-steps feature in the 〈v〉 versus F curves.

The interesting temperature effects on the hysteresis behaviour of the model could be
certainly evaluated in the framework of a Langevin-type dynamics. However, we expect
that, as long as the thermal fluctuations are much smaller than the amplitude of the external
potential, the qualitative dynamical response does not change significantly (simply smoothing
the sharpness of the transitions) and an analysis in the absence of a an external noise is
reasonable.

We hope that the results presented in this work may be relevant to future theoretical and
experimental studies concerning microscopic tribology of real physical systems, where the
geometrical features of the interfaces in relative motion (e.g., quasicrystal surfaces or lattices
with a complex unit cell) could play a major role.
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